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A DNA-protein complex modeled by a semiflexible chain and an attractive spherical core is studied in the
situation when an external stretching force is acting on one end monomer of the chain while the other end
monomer is kept fixed in space. Without a stretching force, the chain is wrapped around the core. By applying
an external stretching force, unwrapping of the complex is induced. We study the statics and dynamics of the
unwrapping process by computer simulations and simple phenomenological theory. We find two different
scenarios depending on the chain stiffness: For a flexible chain, the extension of the complex scales linearly
with the external force applied. The sphere-chain complex is disordered; i.e., there is no clear winding of the
chain around the sphere. For a stiff chain, on the other hand, the complex structure is ordered, which is
reminiscent of nucleosome. There is a clear winding number, and the unwrapping process under external
stretching is discontinuous with jumps of the distance-force curve. This is associated with discrete unwinding
processes of the complex. Our predictions are of relevance for experiments, which measure force-extension
curves of DNA-protein complexes, such as nucleosome, using optical tweezers.
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I. INTRODUCTION

Complexations between chainlike molecules and spheri-
cal host particles are frequent in nature. Key examples can be
found in living organisms, where various DNA-protein com-
plexes play important roles in fundamental life processes[1].
This complex formation is also important for potential appli-
cations in gene delivery, where negatively charged DNA is
complexed with various cationic substances to be an efficient
gene carrier. One of the prominent examples is the nucleo-
some, which is constituted by cationic proteins, called a hi-
stone octamer, and DNA wrapping around them. The forma-
tion of the nucleosome is the first step for a dramatic
compaction of long DNA chains from the order of cm down
to a nucleus size of,mm [2–4]. Since the tight wrapping of
DNA around the histone should limit the accessibility of
transcriptional factors, the nucleosome structure in geneti-
cally active states is expected to be loosened or, at least,
partially unwrapped. Therefore, the stability and dynamical
properties of the nucleosome are crucial factors for the gene
activity in eukaryotic cells[5,6].

In a real nucleosome, there are 14 binding regions on the
histone surface, which define the helical wrapping path of
the DNA. However, from the side of physics, the first task is
to figure out the basic and principal mechanisms, which are
free from the molecular specificity. Along this line, simple
systems with a spherical or cylindrical particle and a polymer
chain have been adopted in the hope of capturing the essen-
tial features of nucleosomes[6–17]. The sphere-chain com-
plexation behavior is controlled by several factors, such as
the nature of interaction between them, the sphere size, and
the chain stiffness. It is an interesting question to study the

response of the complex with respect to an external force
acting on the chain[13,18]. A dramatic change of the com-
plex structure is expected for large external forces. In fact, it
is known that the wrapping behavior of nucleosomes in the
cell is influenced by the tension generated by molecular mo-
tors [19,20].

In the present article, we study the complexation behavior
of a simple DNA-protein model system by means of com-
puter simulations and a phenomenological theory. Currently,
the only experimental example relevant to our study is the
nucleosome—i.e., the stretching of chromatin by optical or
magnetic tweezers[20–23]. However, we remark that poten-
tial applications to other relevant experimental studies such
as colloid-polyelectrolyte complexes under tension are ex-
pected, which should be interesting in the context of nano-
technology as well as biological science. Thus, we do not
restrict ourselves to the nucleosomelike structure only, but
aim to get a full picture of the properties inherent in the
sphere-chain complex under tension. In particular, we inves-
tigate the effect of chain stiffness on the structure of a
sphere-chain complex and its consequent characteristics in
response to external tension acting on the end monomers of
the chain. We find two different scenarios, which depend
crucially on the chain stiffness: For a flexible chain, the ex-
tension of the complex scales linearly with the external force
applied. The sphere-chain complex is disordered; i.e., there is
no clear winding of the chain around the sphere. In the op-
posite limit of a stiff chain, however, the complex takes a
nucleosomelike ordered structure and there is a clear winding
number. The unwrapping process under external tension is
discontinuous, exhibiting jumps in the distance-force curve.
This can be traced back to discrete unwinding processes of
the complex. Our predictions are of relevance for experi-
ments, which measure force-extension curves of DNA-
protein complexes, such as the nucleosome, using optical
tweezers[20–23].
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Our paper is organized as follows: In Sec. II, we introduce
a monomer-resolved model of DNA-protein complexes
which is studied by simulations. Simulation results are pre-
sented in Sec. III. A further discussion based on a simple
theory is contained in Sec. IV. Finally we conclude in Sec. V.

II. SIMULATION MODEL

The model we adopted is almost the same as that studied
previously in Ref.[15]. First, a polymer chain is represented
by N=50 spherical monomers at positionsr i. In what fol-
lows, we rescale all lengths and energies by the size of the
monomer diameterb;1 (which sets the molecular thickness
of the chain) and thermal energykBT;1, respectively.
Neighboring monomers are connected via harmonic bonds in
order to ensure connectivity along the chain; the bond energy
between neighbors reads asUbond=skbond/2dsur i −r i+1u−1d2.
We set the spring constantkbond=400, which gives an almost
constant bond length,1. The chain stiffness is implemented
by a bending potential of the formUbend=kh1−sr i−1−r idsr i

−r i+1dj, which favors stretched configurations. The bending
modulusk is connected with the chain persistence lengthlp
via lp.k−0.5 (for k.2) [15]. The excluded volume of
monomers is modeled by the repulsive part of a Morse po-
tential, UM,repsr i,jd=em exph−amsr i,j −1dj, whereem=1.0, am

=24, andr i,j is the distance between monomers.
Next, we introduce a spherical particle. The interaction

between each monomer and the spherical particle is modeled
through the full Morse potentialUM =efexph−2asr i −sdj
−2 exph−asr i −sdjg, where r i denotes the distance between
the ith monomer and the spherical core. We seta=6 ands
=1.9 (corresponding to a sphere diameter of about 2.6), so
that the volume ratio between the spherical core and polymer
chain mimics a real nucleosome[15]. The strength of attrac-
tion is fixed to bee=8, which ensures a tight wrapping or
adsorption of a polymer on the spherical core in the absence
of stretching force. It should be noticed that such a model
with only short-range interactions would be readily accepted
for the charged system, too, in the salty environment(includ-
ing the physiological condition), where long-range electro-
static interactions become local due to screening.

Even though a tightly wrapped complex is formed, the
spherical core slides along the chain and prefers positioning
at the chain end[15]. We would like to put the complex now
under external tension. In order to eliminate possible end
effects of the chain and to get a clear-cut configuration, we
fix simultaneously one end monomerand the center of the
sphere: the spherical core is fixed at the origin and the end
monomer atr1=s−8,0,0d. Then, a stretching force is applied
to the other end monomer with positionrN along thex axis
(see Fig. 1). We realize this by either applying a constant
force f or stretching the monomer at a constant velocityv. In
the former case, we obtain the average extension in thex
direction,r ;krN,xl, while in the latter, we monitor the resis-
tant force during the possibly nonequilibrium, unwrapping
process.

The monomers obey the stochastic dynamics described by
an underdamped Langevin equation

m
d2r i

dt2
= − g

dr i

dt
+ Ristd −

]U

]r i
. s1d

The role of the solvent is incorporated by the friction(g is
the friction constant) and the random kicks acting on the
particles. This random force is represented by a Gaussian
d-correlated noise whose variance is related to the friction
constant through the fluctuation-dissipation theorem:
kRistdRjst8dl=6gdi jdst− t8d. Herem is the monomer mass and
the total internal energyU splits naturally intoU=Ubond
+Ubend+UM,rep+UM. We integrate the discretized equation of
motion using a leapfrog algorithm with time step ofDt
=0.0025t, where ts=gb2/kBTd is a typical time scale of
monomer diffusion. In the following, the time is represented
with a rescaled unit witht. Let us remark that the monomers
are, in fact, in an overdamped situation. However, by putting
a fictitious inertial term in the equation of motion, it is pos-
sible to take a rather long-time step, which results in a sig-
nificant reduction of the calculation time. This inertial term
only affects the velocity relaxation of monomers, but does
not affect events happening on the large time scale of our
interest. It does not affect at all equilibrium quantities. We
further remark that hydrodynamic interactions as induced by
the solvent flow are neglected in our approach, but again
these are irrelevant if equilibrium quantities are calculated.

III. RESULTS

We first study the response of the complex to applied
constant tension. We carried out sufficiently long simula-
tions, typically ,43108 time steps, to extract equilibrium
properties of the ensemble. We carefully checked that our
simulations accomplish the equilibrium sampling in the con-
figurational space and do not suffer from a possible kinetic
trap due to the energy barrier. In Fig. 2, we show the force-
extension relation for the cases with different three chain
stiffnessesk=2, 5, and 10. In all cases, when the applied
tension is weak, the extension increases rather rapidly with
the tension. However, the response under moderate or high
tension crucially depends on the chain stiffness. The exten-
sion of the complex with a flexible chainsk=2d gradually
increases with the applied tension with almostlinear depen-
dence. On the other hand, if the chain is stiff enoughsk
=10d, the extension is almost constant; in other words, the

FIG. 1. Schematic sketch of the complex under external stretch-
ing. The first end monomer is fixed atr1, the protein sphere with
radiusR is fixed at the origin, and the other end monomer is pulled
by the forcef along thex axis. The chain extensionr and the tilt
angle f, which can be defined for the ordered complex, are also
shown.
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susceptibility is very low until an abrupt discrete change oc-
curs around some critical tension. It can be shown that this
distinction comes from the structural property of the com-
plex.

To see this, we introduce the parameter[15]

h ;
uSkilr i,i+1 3 r i+1,i+2u

Np
, s2d

where the summation inh is taken only over the monomers
in the vicinity of the particle’s surfacesr i ,2.9d andNp is the
number of such monomers. This quantity measures a degree
of “wrapping ordering” of the complex. If the chain wraps
orderly and traces the helical path on the sphere surface,h
takes a high value ofh*0.4. Otherwise, the complex is
regarded as a random adsorption of the chain on the sphere,
which results in a small value ofh&0.2. Figure 3 shows the
probability distribution ofh for complexes of different chain
stiffnesses. The ordered and disordered complexes are
formed from the stiffsk=10d and flexiblesk=2d chains, re-
spectively, and the bimodal distribution between these two
states is observed in the case of intermediate chain stiffness
sk=5d. Figure 4 shows typical simulation snapshots of the
complex corresponding to ordered and disordered states.
Note thath for the complex with one turn(the number of

helical turns around a core or wrapping numberw=1) is
abouth.0.33, which is slightly smaller than that for a com-
plex with w=2 sh*0.4d.

Figure 5 shows the specific heatCf for various chain stiff-
nesses as a function of the applied stretching forcef. In the
constant-force ensemble, it is the temperature derivative of
the enthalpy, which is calculated asCf =kU2l−kUl2

− fskrN,xUl−rkUld. For a flexible chain sk=2d, Cf just
slightly increases withf in a monotonic way, while for stiffer
chains, it shows sharp peaks aroundf =1.6, 3.2 fork=10,
and f =2.8, 4 fork=5. In general, a peak in the specific heat
indicates a transition between two different states. In fact,
these peaks exactly correspond to the points, where the
force-extension relation reveals abrupt jumps, and indicate a
transition from wrapping numberw=2–1 andw=1–0. In
the remanent values of an applied tensionf, Cf is very small
andr is almost constant. In contrast to the lax response of the
disordered complex from a flexible chain, the response of the
ordered complex is characterized by a “switching behavior”:
it is very stable against tension, but reveals a sudden switch-
ing to a different state by an unwrapping transition at some
critical tension. This trend becomes more evident for the
complex with the stiffer chain.

In Fig. 6, we show the probability distribution of the chain
extensionr around the critical force of the transition from
w=2 to 1 for k=10. Clear bimodal distributions are seen,
where the relative probability changes with the increase inf,
whereas the peak positions remain unchanged. The free en-

FIG. 2. (Dots) Force-extension relation of the sphere-chain com-
plex obtained by computer simulations for different chain stiff-
nessesk=2, 5, and 10. In the case of a bimodal distribution ofr, we
plot both peak positions.(Line) Theoretical force-extension relation
of the disordered sphere-chain complex. The parameters are esti-
mated from the corresponding system in the simulation withk=2:
a1=−7, a2=0.12,L0=44, andlp=1.5.

FIG. 3. Probability distribution of the order parameterh for
complexes made from chains with different stiffnessesk=2, 5, and
10 under a stretching forcef =0.2.

FIG. 4. Typical simulation snapshots of the sphere-chain com-
plex. Top: an ordered wrapping with wrapping numberw=2 for k
=10, f =1. Middle: an ordered wrapping withw=1 for k=10, f
=2.5. Bottom: a disordered state fork=2, f =1.

FIG. 5. Specific heat as a function of the stretching force for
different chain stiffnessesk=2, 5, and 10.
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ergy barrier between these two states is deduced to beDG
.4–5.

For the chain withk=5, an additional, somewhat broad
peak in Cf is seen aroundf .1.2, where the jump in the
extension is hardly recognized. Instead, the complex changes
its preferred structure around this point. The analysis within
the distribution ofh indicates that this is a signal for a
tension-induced ordering transition. As Fig. 3 shows, the
complex with intermediate stiffnesssk=5d reveals the bimo-
dal distribution ofh under the weak tension. This equilib-
rium between disordered and ordered states shifts to an or-
dered one with an increase inf. At f .1.5, the distribution of
h becomes similar to that of an ordered complex. Under
stronger tension, the complex behaviors are almost identical
to those of an ordered one.

IV. DISCUSSIONS

A. Force-extension relation in a disordered complex

Now, we present a phenomenological theory to describe
the properties of the sphere-chain complex in a disordered
state under the stretching force. We consider a polymer chain
(lengthL0, thicknessb=1), one part of which(its length isL)
is adsorbed on the spherical core of radiusR.

The remaining part of the chain(lengthL8=L0−L) is free
and unbound by the core particle. It takes a stretched confor-
mation due to the stretching tension applied to the chain end,
whose end-to-end distance(distance from the core surface to
the stretched chain end) is denoted asr8.

In the disordered state, there are substantial freedoms for
the adsorbed segment distribution on the core surface. To

describe this situation, we adopt a Flory-type mean-field ar-
gument. A conditional free energy of the disordered state
characterized by an adsorbed lengthL, under the action of a
stretching forcef, is written as

GdsLd = FdsLd + FusL8d, s3d

whereFd andFu represent the free energy of the disordered
segments on the core surface and that of unbound segments
under tension.

FdsLd is composed of the contributions

FdsLd = Fad + Fconf + Fss. s4d

The first term is the energetic gain due to the segment ad-
sorption on the core:Fad=eL, wheree,0 is the adsorption
energy per length. The second term is the conformational
entropy of the chain on the core, which is evaluated from the
random walk on the core(proportional to the segment num-
ber L /lp) plus its deviation from ideal chain statistics:
Fconf .−L /lp+R2/Llp+Llp/R2 [24]. The last term in Eq.
(4) describes the segment-segment interaction, which can be
taken into account through a virial expansion up to second
order: Fss.Bn2R2, whereB is the second virial coefficient
B,blp and n stands for the segment density on the core,
n,L /R2lp.

We describe an unbound chain under tension by a freely
jointed chain with segment length 2lp, which writes the free
energyFu as [24]

FusL8d = −
L8

2lp
lnS4p sinhy

y
D , s5d

wherey;2lpf. The end-to-end distancer8 is associated with
the contour length of unbound partL8 as

r8 = L8Scothy −
1

y
D . s6d

By putting Eq.(4) and Eq.(5) in order, we obtain

GdsLd = a1L + a2L
2 + a3L

−1 −
L0 − L

2lp
lnS4p sinhy

y
D , s7d

wherea1.e+lp/R2, a2.b/lpR
2, anda3.R2/lp. The third

term is shown to be always negligible compared to the sec-
ond term in the case of our interest; thus, we can safely
neglect it. And note thatL=L0−L8 is a function ofr8 [see
Eq. (6)].

The most probable length for the adsorbed chain part is
determined through the minimization of the free energy,
]Gd/]r8=s]Gd/]Lds]L /]r8d=0 (this is equivalent to the
equality of the chemical potentials of adsorbed and unbound
segments):

kLl = −
a1

2a2
−

1

4a2lp
lnS4p sinhy

y
D . s8d

To compare with the result from simulations, it is convenient
to rewrite this relation in terms ofr using r =r8+R:

FIG. 6. Probability distribution of the chain extensionr (a) be-
low sf =1.6d and (b) abovesf =1.8d the critical stretching force to
induce the unwrapping transition fromw=2 to 1 for a chain stiff-
ness ofk=10.
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r = FL0 +
a1

2a2
+

1

4a2lp
lnS4p sinhy

y
DGFcothy −

1

y
G + R.

s9d

This function is depicted in Fig. 2. All of the coefficients in
Eq. (9) can be estimated once the system is specified. There-
fore there is, in principle, no space for adjustable parameters.
The theoretical prediction shows a good agreement with the
simulation result, especially for large forces.

Let us consider the two limiting cases:(i) the small
force regimesy!1d and (ii ) large force regimesy@1d. By
taking asymptotic limits in Eq.(9), we obtain

r = Hb1 + b2f sy ! 1d,

b3 + b4f sy @ 1d,
J s10d

where b1=R, b2=lpsL0+a1/2a2+ lns4pd /4a2lpd, b3

=a1/2a2+L0+R, andb4=1/2a2.
In the first limiting casesy!1d, the unbound chain sec-

tion is coiled in space, where the chain extension is linear as
expected(linear response to the weak external field). In the
freely jointed chain model, the response coefficient of the
chain with contour lengthL and segment lengthl is easily
calculated from Eq.(6) as Ll /2. However, in the sphere-
chain complex, the contour length of the unbound chain sec-
tion is not fixed but dependent on the conditions. Our theory
claims that the response of the disordered sphere-chain com-
plex to the weak stretching force is dictated by the entropic
elasticity of the unbound chain, whose contour length is de-
termined by the balance between the energetic gain due to
adsorption(and other terms proportional toL) and interseg-
ment repulsion on the core. It should be noted that the theory
underestimates the chain extension for very low stretching
force. This deviation probably comes from the steric repul-
sion between the core particle and unbound chain segments,
which is not taken into account in our theory.

The second limitsy@1d corresponds to the situation
where the unbound chain section is completely stretched.
Such a situation should be realized if the attractive interac-
tion between segments and the core particlesed is sufficiently
strong. Equation(10) indicates that, in this limit, too, the
chain extension under large stretching force is alinear func-
tion with applied tension with a slopeb4. However, the ori-
gin of the linearity stems from the different physics from that
in the weak-stretching-force regime. In this limit of the com-
plete stretching of unbound chain, the chain extension is lin-
early related to the length of the adsorbed chain section. In
the disordered complex, the length of the adsorbed chain
section is determined by the balance between energetic gain
due to adsorption(and other terms proportional toL) and
intersegment repulsion on the core. When the external ten-
sion is applied, the system responds by shifting this balance,
where the response coefficient is given byb4.

It is also intriguing to consider the situation in which at-
tractive interactions work between segments. In this case, the
second virial coefficientB of the segment-segment interac-
tion is expected to decrease and to change its sign with an
increase of the segment-segment attraction. At that “u point,”
the third virial coefficientC, instead ofB, becomes the rel-

evant term in Eq.(4), and as a consequence, we have a term
proportional toL3, instead ofL2, in the conditional free en-
ergyGdsLd [Eq. (7)]. As a result, anonlinearresponse to the
stretching force is expected at “u conditions.”

B. Unwrapping transition in an ordered complex

Contrary to the disordered structure made from a random
adsorption of a flexible chain, a stiff chain forms an ordered
complex with a core, where the segment fluctuations around
the optimal configuration are negligible. In this case, a theo-
retical argument based on a ground-state analysis indicates
the all-or-nothing unwrapping transition[7]. Consider a stiff
chain wrapping around a cylindrical core particle. The free
energy of this cylinder-wrapped chain complex can be writ-
ten as a sum of the adsorption and bending energy terms:

F0sLd = Fad + Fbend, s11d

whereFad=eL andFbend=kL /2R0
2. HereL andR0 denote the

chain length and radius of curvature, respectively, of the
wrapped part. Both terms are linear in the wrapped chain
lengthL. This indicates that, by changing either the adsorp-
tion energy densitye se,0d or chain rigidityk, one expects
the following two situations: a complete wrapping(the chain
wraps around the cylindrical core as much as possible until
the adsorption space is exhausted) or a complete unwrapping
(the chain takes a stretched configuration due to the chain
rigidity). The boundary between these two regimes is given
ase=−k /2R0

2.
In our system, too, the ground-state analysis is expected

to be a good approximation for the ordered complex. When
the tension is weak, the entropic elasticity of the unbound
part plays an important role as is discussed in Sec. IV A. In
this regime, the chain extension increases rather rapidly with
the tension. We note that this regime of weak stretching force
becomes narrower with an increase in the chain stiffness,
since the relevant parameter isy;2lpf [see Eq.(10)], which
is indeed confirmed by the simulation(Fig. 2).

Here we consider another limiting case, where the un-
bound chain part is completely stretched by a strong tension.
Under such circumstances, the free energy of the ordered
complex with the applied tensionf is written as

G0sLd = F0sLd − fsL0 − Ld. s12d

Since the added term due to the stretching force is also linear
in L, the all-or-nothing unwrapping transition is expected in
this case, too. However, the following differences should be
noted:(i) the presence of stretching force acting on the chain
and (ii ) the possibility of multiple wrapping of the chain
around a spherical core. As for the first point, the stretching
force strongly restricts the chain segment around the bound-
aries between adsorbed and free segments—i.e., entry and
exit points. This results in the discrete unwrapping transition
between states with different wrapping numbers separated by
an energy barrier, which is discussed below. And the second
point leads to the stepwise, but not all-or-nothing(predicted
for a cylindrical core), unwrapping transition. The stepwise
unwrapping is a consequence of the spherical geometry of a
core particle, in which the bending energy contribution de-
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pends on the wrapping number due to the curvature of the
core and hard-core volume of the chain.

To elucidate the first point—i.e., the effect of the stretch-
ing force on the energy barrier—we study the dynamical
process of the unwrapping transition by stretching the end
monomer slowly by constant speedv. We adopt vDt
=0.0002, which is, in fact, very slow compared to the diffu-
sion.

Figure 7(a) shows the force-extension curve for the case
with stiff chain of k=10, where the characteristic sawtooth
pattern is observed. For comparison, the correspondence
with the result from the constant force ensemble(Fig. 2) is
also included. This clearly demonstrates the energy barrier
during the unwrapping transition and that quite a large force
is required to unwrap the chain. To see the behavior of the
complex during the unwrapping process by the stretching
force, we monitor the tilting angle of the ordered complexf,
which is defined by the angle between the axis of the helical
pathway of the chain on the sphere and the direction of the
force (x axis), as is depicted in Fig. 1. The helical axis is

calculated by a sum of cross products of bond vectors in the
vicinity of the core particle’s surface[see also the definition
of the order parameterh given in Eq.(2)]. Figure 7(b) shows
the tilting angle and extension relation. Because of the finite
thickness of the chain, the vector connecting the monomers
at entry and exit points of the complex is not parallel to the
force direction, which produces a torque working on the
complex. Owing to this torque, the complex maintains al-
most constant tilting angle, which slightly deviates from the
perpendicular angle:f.1.1–1.2 up tor .27. By further
stretching the chain beyondr .27, the tilting angle shows a
sudden decrease. This point exactly corresponds to the re-
gion where the resistant force sharply increases. These ob-
servations indicate the unique feature of unwrapping process
of the ordered sphere-chain complex by the stretching force.
It is not a gradual peeling of the chain around the core, but a
chain unfolding accompanied by the complex tilting. Com-
paring Figs. 7(a) and 7(b), the complex in the large tilting
angle is not in the global minimum of the free energy, but in
the metastable state, if the stretching force does not exceed
the threshold of the limit of stability. However, this meta-
stable state is blocked by an energy barrier, which should be
overcome by a further tilting to reach the globally stable
state. Therefore, even if a stretching force larger than a criti-
cal strength for the unwrapping transition is applied, the
sphere-chain complex stays in a kinetically stabilized state
during a finite lifetime.

Figures 7(c) and 7(d) show the bending energyUbend and
adsorption energyUM versus extension relations, respec-
tively. In the region of large tilting,r .27–31 and r
.37–43, these quantities behave differently from the other
regions. The change inUbend becomes small, or even almost
constant, while the change inUM becomes sharper. Accord-
ing to these observations, in the tilted state, the number of
monomers adsorbed on the core is diminished, thus energeti-
cally less favored, and nevertheless, the cost in the bending
energy is not changed, indicating this state is unstable in
terms of bending, too[18].

In the experiments of chromatin stretching by optical
tweezers, similar sawtooth patterns in force-extension curves
have been reported[20–23]. The measured force peaks are
attributed to the unwrapping of the nucleosomes, and the
strength of the force peaks was found to be.20 pN, which
is almost 10 times larger than the estimated value from the
equilibrium theory[6,13,25]. To understand these observa-
tions, the inevitability of the nucleosome tilting under the
stretching force has been suggested[21], and the correspond-
ing energy barrier has also been calculated[18]. Although
this feature is expected to be enhanced in the system with
specific site-site interactions as in the case of nucleosome,
our results confirm that it is a general one inherent in un-
wrapping process of an ordered core-chain complex under
tension.

C. Tension-induced ordering for intermediate chain stiffness

In this subsection, we investigate the possibility of
tension-induced ordering, which is observed in the simula-
tion with an intermediate chain stiffnessk=5. It is expected

FIG. 7. Unwrapping process by stretching an end monomer by a
constant speed for the chain stiffness parameterk=10. (a) Force-
extension relation. The result from the force constant ensemble is
also plotted by circles for comparison.(b) Tilting angle-extension
relation. (c) Bending energy-extension relation.(d) Adsorption
energy-extension relation.
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that the ordering by the stretching force is induced by a
rather strong forcesy@1d, as is indeed the case in the simu-
lation. In the regime of strong forces, the free energy of the
disordered state under the stretching forcef [Eq. (7)] is trans-
formed into the following simple form:

GdsLd = sa18 + fdL + a2L
2 + const, s13d

where a18;a1+Da1. Here Da1 denotes the bending energy
associated with the disordered segment distribution, which
should be taken into account, since the chain under consid-
eration has some stiffness. It is approximated asDa1
,k /R82. HereR8 is the effective mean radius of curvature of
the chain segments on the core and should be determined
self-consistently for a quantitative discussion. However, on a
qualitative level, it is enough to notice thatDa1 is small for a
flexible chain and becomes substantially large for a stiff
chain. After representing the system by the most probable
state, which is derived by]GdsLd /]L=0 (mean-field approxi-
mation), we obtain the optimum free energy for the disor-
dered complex:

Gd
* = −

sa18 − fd2

4a2
+ const. s14d

It is noticeable that this is aquadraticwith respect tof.
On the other hand, the free energy of the ordered state

under stretching force is given by Eq.(12), which is alinear
function of f.

The position and form of these free energies as functions
of f depend on the chain stiffness and size of the core par-
ticle. For a flexible chain and a large core,Gd

* ,G0 indepen-
dent of the value off, while Gd

* .G0 for a chain with suffi-
cient stiffness and a small core. However, the crossover from
the one state to another is expected for the intermediate chain
stiffness at a critical force, whereGd

* =G0 holds. This is a
consequence of the dependencies of free energies onf [Eqs.
(14) and(12)] and indeed corresponds to the tension induced
disorder-order transition.

V. CONCLUSIONS

In conclusion, we have investigated a simple model for a
complex formed by a globular protein which attracts a DNA
chain. Depending on the model chain stiffness, the complex
is either disordered on the spherical surface or exhibits an
order—i.e., a clear winding around the spherical core. We
have studied by computer simulations and simple phenom-

enological theory the unwrapping of this complex under an
external stretching force which acts on one end monomer of
the chain, while the sphere and other end monomer are kept
fixed. For a disordered complex, we observe a linear scaling
between the force applied and amount of stretching achieved.
This linear force-distance law is quantitatively confirmed by
a simple phenomenological approach in the case where the
forces are relatively high. On the other hand, for large chain
stiffness when there is a clear winding, there are abrupt un-
wrapping transitions which are connected to a change of the
winding number of the chain around the sphere. If a constant
velocity to one end monomer is applied, there is a large
energetic barrier in unspooling the complex. Moreover, the
unwinding is accompanied by a tilt of the spooled complex
relative to the pulling direction. Finally we have observed
the effect of tension-induced ordering for intermediate chain
stiffness: If a disordered complex is stretched, the external
stretching force induces ordering—i.e., winding around the
sphere. In is noted that the geometrical shape of the core,
which is spherical in the present case, may affect some of our
results.

Our model is in principle to be realized in chromatin
stretching experiments[20–23] where the protein and end
monomers are guided by optical tweezers. Other realizations
of our model on a larger length scale are complexes of poly-
electrolytes and spherical charged colloidal particles[26,27],
where the persistence length of the chain can be tuned via the
salt concentration in the solution[28].

Meanwhile, we have to note that many real complexes,
especially biomolecular complexes, are equipped with com-
plicated structural details, such as inhomogeneity of charge
distribution, specific interaction sites, etc. Although some
general properties of such complexes could be understood in
the framework of our simple model, there should be other
aspects, which are strongly affected by their specificities.
Therefore, further more specific studies based on micro-
scopic details are also important to bridge the gap between
real complexes and our phenomenological model.
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